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Virgindia Polytechnic Institute and State Univensity
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A exact and findte-clement analysis s used to predict the static

bending and natunal vibration nesponse of rectangularn plates Lamcnated
of composite maternial having different efastic properntdies depending upen
whethen the fiben-dineetien strains are tensile on compresscve. The
analysis 5 based on a theony that accounts furn andsotropy, bending-
stnetehing coupling, thickness shean defoumation, and both coupling
inentia and notatony inertia. The findte-element nesulits are found to
agree very closely with the exact closed-foam solutions (n the case of a
cross-ply nectangulan plate having s(mply supponted cdges and subjected

to sdnwsoddally distrnibuted nommal-pressune Lvading on tempernatutie

Loading.

1. Introduction

Certain fiber-reinforced materials, especially those with very soft

matrix material (e.q., cord-rubber composites), exhibit different elastic

behavior depending upon whether the fiber-direction strain is tensile or
compressive [1-3]. In other words, the tangent modulus in tension is
quite different from the tangent modulus in compression. As a first
approximation the uniaxial stress-strain behavior of such materials is
often represented as being linear with different slopes (i.e., elastic

moduli) depending upon the sign of the fiber-direction strain. Such a
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material is called a bimodulus composite material. Several macroscopic
material models appropriate for bimodulus fiber-reinforced composites
have been proposed and are reviewed in [4]. It has been shown that the
fiber-governed symmetric-compliance model proposed in [5] agrees well
with experimental data for several materials with drastically different
elastic properties in tension and compression.

Prior to the works of the present authors, the literature available
in English on bending and vibration analyses of bimodulus plates was
quite sparse and largely concerned with the bending of bimodultus
isotropic-material plates. Shapiro [6] considered the simple problem of
a circular plate under a pure bending moment at its edge. Kamiya [7]
analyzed the large-deflection behavior of clamped circular plates using a
finite-difference technique. 1In [8], Kamiya used the Galerkin method to
analyze the large-deflection behavior of rectangular plates under
sinusoidally distributed loading. The effect of thickness shear
deformation was included in the simple case of cylindrical bending by
Kamiya [9]. The only previous analyses applicable to anisotropic
bimodulus material are the works of Jones and Morgan [10], who treated
cylindrical bending of a thin, cross-ply laminate, and the closed-form
solutions of Kincannon and Bert [11,12] for clamped elliptic plates. All
of the previous thermoelastic analyses of bimodulus-material plates were
also limited to isotropic himodulus materials and midplane-symmetric
temperature changes [13-17]. Apparently. there were no published papers
on the vibration of himodulus plates.

In the last two years, the present authors have contributed a series
of papers to the literature on bimodulus rectangular plates [18-23].

These works are apparently more general than any analyses that have
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appeared in the open literature. More specifically, these works differ

from previous works in the following respects:

1. The material of each layer is both elastically and

thermoelastically orthotropic and bimodular.

2. Both single-layer orthotropic and two-layer cross-ply laminated

plate constructions are considered.

3. Thickness shear deformations are included.

4, Temperature changes through the thicknéss as well as in the

plane are considered.

5. Both finite-element and exact closed-form solutions are

p:ésented.

The objective of the present paper is two-fold: to review the
recent developments in the analyses of bimodulus-material plates with
finite dimensions and to present new finite-element results for
rectanqular plates under conditions that do not admit closed-form

solutions.

2. Governing Equations for Bimodulus Plates

In the following the equations governing the shear deformable theory
of layered composite plates (see Whitney and Pagano [24]) is reviewed and
the thermoelastic constitutive equations of bimodulus-material plates are
presented. In deriving the qaverning equations it is assumed that all of
the layers in the plate remain elastic during the déformation, the
generalized Hooke's law is valid, and no slip occurs between any two
layers.

Consider a plate constructed of a finite number of uniform

thickness, orthotropic, bimodulus layers with arbitrary orientations

(i.e., the material symmetry axes of each layer do not cnincide, in

e




general with the plate axes). The x-y plane lies in the middle plane, R,

of the plate and the z-axis is normal to R. The displacement field in

the shear deformable theory of plates is assumed to be given by

] u(x,y,z,t) = ug(x,y,t) + zy, (x,y,t)

1 vix,y,2,t) = v (x,y,t) + zy (x.y,t) (2.1)
%‘ W= w(x,y,t)

; where u, v, and w are the displacements along x, y and z directions,
respectively, u, and v, are the in-plane displacements of the middle

plane, ¢, and Yy are the bending slopes, and t is time. Using the

small-deflection theory, the strain-displacement relations can be
expressed in the form
€, 2 g =u + zy

=y, = + v (2.2)

€ = Yxy T Yo,y F Vot 2h y ¥y ) s
LI LI (P T 0

where W,y = aw/3x, etc.

- The egquations of motion are given by,

Nigx ¥ Noyy = Pug te + R¥y gy

N =P

Vo,tt + R¥y ¢y
Ql’x + QZ,y =4q 4 Pw,tt (2.3)
M

N
6,x * "2,y

1,x + MG,y - Q1 -

Do tr + R g gy
Me,x + Mz,y -0 Iwy,tt + Rvo et
where P, R, and 1 are the normal, coupled-normal-rotatory, and rotatory

inertia coefficients,

m+] ,n (M)
(P,R,I) = ):f (1,2,2%)p dz (?.4)
- m” Zm '
p(m)being the material density of the m-th layer, q is the transversely




distributed force, and Ni’ Q;, and Mi are the respective inplane and

transverse stress and moment resultants defined by

h/2 h/2

(N1,M]) =f_h/? (],2)01- dz (i = 1,2,6) |, (QI,QQ) ’-'I_h/z(os,ol,)dly

(2.5)
where h is the plate (laminate) thickness, and the so-called contracted
subscript notation is employed to denote the stress components.

Assuming that the only plane of symmetry existing is in the plane of
the plate, the thermoelastic constitutive relations for each layer (&)

are taken to be monoclinic and bimodular as follows:

o Origg Quzgg O € - ay T
9b =) Yoy Qg O €, - gl (2.6)
% 0 0 Qeeyy €6

Oy Coukg Cusig €y
{"5} i [Cubkg CSSkg,] {55} (2.7)
Here T is the temperature change measured from the strain-free
temperature, the C's are Cauchy elastic shear stiffnesses, the Q's are
plane-stress reduced stiffnesses, and the ao's are thermal-expansion
and C.

ike ijke
“ikl) refers to the bimodular characteristics: k = 1 denotes properties

coefficients. The third subhscript in Qi {and second in
associated with fiber-direction tension, k = 2 denotes fiber-direction
compression. Also, subscript & refers to the individual layer number,
i.e., £ =1 and 2 for a two-layer laminate.

Substituting (2.2), (2.6) and (2.7) into (2.5), we ontain the

constitutive equations for an arbitrarily laminated plate,

—
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where
o _ 0 _ 0 _ 4
1 T Uy x » %27 VYo,y * e Yo,y * Vo, x (2.10) .
Ky = ‘p ’ Ky, = W s Ko = ¢ + \P ) 3
1 Xy X 2 Y,y 6 X, ¥ Y, X :
and Aii’ Bij’ Dij’ Sij are the respective inplane, bending-inplane

coupling, bending or twistina, and thickness-shear stiffnesses defined as

follows:

(Aij’Bij’Dij) =I

h/2 ,
h/z(]’zvzz)QiJ‘kl dZ (]93 = ];2s6)

(2.11)

1 _KKJI L]kl (1,3 = 435)

T

The stress and moment resultants, Ni and ME, due to thermal loading, are

def ined by

z L Qiike %k

(T»2T )z, (i,§ = 1,2,6) (2.12)
m ‘m j

where the temperature change from a reference state is assumed to be
linear through the thickness, consistent with the plate theory:

T(x,t,z) = To(x,y) + 2T, (x,y). (2.13)

This completes the description of the field equations. Closed-form
snlutions to these equations are possible in the particular case of a
cross-ply plate whose stiffness coefficients (Aij’ Bij and Dij) with
subscripts 16, 26, and 45 are zero, and whose edges are hinged flexurally
but free to move in a direction normal to each edge. The temperature

distribution and the normal-pressure loadings must be sinusoidal in order

to obtain the closed-form solution (see [18-23]).




3. Finite-Element Formulation

The finite-element formulation of the equations presented in the
previous section follows along the same lines as for ordinary (i.e., not
bimodulus) plates (see Reddy [25]). The main difference lies in the
computation of the stiffness coefficients, which depend on the stresses
in the plate. We summarize the results in the following.

Consider a finite-element representation of the midplane of the
plate by quadrilateral isoparametric elements. Over a typical element,
Re, the displacements (uo, vo,w,wx,wy) are approximated by expressions

n n

‘] Ujbi s Vg T ? vib;, etc. (3.1)
where ¢i(x’y) (i =1,2,...,n) are interpolation functions associated with
the linear (n = 4) or quadratic (n = 8 or 9) rectangular element.
Substituting (3.1) into the weak form associated with (2.3), (2.8), and
(2.9), we obtain

([KT - w?[M]){a} = {F} (3.2)
The elements of the stiffness matrix [K] and mass matrix [M] are given by

11 - X y
Kij AL G, + Asaeij

12 - Xy Xy
117§ Ki5 = RiaBy3 * Reelyi -

[N

-

X y 15 - Xy Xy
G, . + Beeeij , Ki2= 812613 + B G,

337 B i 6531

K22 = A, 6%5 + AgBly » KP4 = B 8Y] + 8 6Y

KE3 = Begliy * Bo6Y; o+ K§2 = So6l5 + 5,815 »

K33 = Sus6y * Suubly » K{% = 5,605 .

SHE D“G’;J. + osse{j + SSSG?J. . Kyl 0125)% + obee’;{ ,

k33 = D%G)i(j + DZZG{J. + swe‘;j . Kilj‘ =K{d=o0, (3.3)




M(.x(? = PGO(? N (Q = ],293) s

i i
aB _ 00 - .
M% = RGSS (8= 455 @z p),
ax _ 100 -
Mij = IGij , f(a=4,5), (3.4)
F‘].‘ =f f o dxdy . (a=1,2,3,4,5) (3.5)
Re
En = =
6! fe b g b5 a XAy, (57 0,1,2). (3.6)
T T T T 3
FreNx*Ney » Fo=Ng *Ny » F3=a,
T T T T
Fa =M My o fo=Mg ey (3.7)

In the present study the 4-node and 8-node rectangular isoparametric

elements are employed.

4. Numerical Results and Discussion

Numerical results for deflections, neutral-surface locations, and
vibration frequencies are presented for plates under various edge
conditions and loadings. The discussion of the results is divided into
three parts according to bending due to normal pressure, bending due to
thermal loading, and free vibration. In all three parts, numerical
results are presented first for plate problems which admit closed-form
solutions. All of the finite-element results presented herein were
obtained on an IBM 370/158 computer using the double-precision

arithmetic.




Table 1. Elastic properties for two tirecord-rubber, unidirectional,
bimoduTus composite materials

Aramid Rubber (AR) Polyester-Rubber (PR)

(/ Ten51on Compression Tension Compression
Property and Units {(k=1) (k=2) {(k=1) (k=2)

Longitudinal Young's

modulus, GPa (E }) 3.58 0.0120 0.617 0.0369

Transverse Younq s modulus,

GPa 0.00909 0.0120 0.00800 0.0106

MaJor 601sson s ratio,

dimensionlessd (v, ,) 0.416 0.205 0.475 0.185

Longitudinal- transverse

shear modulus, GPab (G),) 0.00370 0.00370 0.00267 0.00267

Transverse-thickness shear

modulus, GPa (G zs) 0.00290 0.00499 0.00233 0.00475

AThe minor Poisson's ratio is assumed to be given by the rec10roca1
relation.

bThe longitudinal-thickness shear modulus is assumed to be equal to the
longitudinal-transverse shear modulus.

Static Bending Due to Normal Pressure

To show the accuracy of the finite-element solutions, a comparison
is made of the present results with the closed-form results obtained in
[21]. Table 2 contains the neutral-surface locations, and the
nondimensionalized transverse deflection of single-layer and two-layer
(0°/90°), simply-supported (SS), réctangular plates (aramid-rubber) under
sinusoidally (SSL) distributed transverse load, q = qosin(nx/a)sin(ny/b).
As can be seen from Table 2, the agreement between the closed-form
solution (CFS) and finite-element solution (FES) is extremely good. It
should be noted that if the material is treated as an ordinary material,
with material properties taken as the average of compressive and tensile

properties, the deflections will he under-estimated significantly.

cm gy S e e e -
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The aramid-rubber plates, in both the single- and cross-ply cases,

have noticeably larger values of Zx than the polyester-rubber ones, due
to the more pronounced bimodulus effect in the fiber-direction Young's
modulus of the aramid-rubber. There are only very slight differences in
Zx and deflection in going from a single-layer plate to a cross-ply
laminate. This is in considerable contrast to ordinary materials.
Having validated the finite-element model, the model is then used
for other combinations of loading and boundary conditions that are not

amenable to closed-form solutions. Figure 1 shows plots of the

nondimensionalized deflection versus the side-to-thickness ratio for two-

layer (0°/90°) simply-supported and clamped (CC) square plates under
various loadings. The effect of the thickness shear on the deflections

is apparent from the graphs.

Static Bending Due to Thermal Loading

Next, numerical results are presented for static bending of plates
under thermal gradients only (i.e., To = 0). The same orthotropic
bimodulus materials as listed in Table 1 are used. Since no measured

values of thermal-expansion coefficients of these materials are

available, the following ratios of the thermal-expansion coefficients are

used:

at/af = 0.5 5 bz =10 ;5 absat -0, (4.3)

To show the accuracy of the finite-element solutions, a comparison

is made of the present results with the closed-form results obtained in

[22]. Table 3 contains the neutral-surface locations, and the

—
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nondimensionalized transverse deflection of single-layer and two-layer
(0°/90°), simply-supported (SS), rectanqular plates (polyester-rubber)
under sinusoidally (SST) distributed temperature, T = Tla sin{nx/a)
sin{ny/b). As can be seen from Table 3, the agreement between the
closed-form solution (CFS) and finite-element solution (FES) is extremely
good (see also Fig. 2).
Table 3. Neutral-surface locations and dimensionless center deflections
for simply-supported thick (b/h = 10, K, = K, = 5/6)

rectangular plates of polyester-rubber subjected to sinusoidal
temperature gradient, T = zT, sin(mx/a)sin(my/b).

Vd

single-layer two-layer +
a/b Z, (= z,/h) Wt Z, (= z,/h) W
CFS FES CFS FES CFS FES CFS FES

0.50 0.1031 0.1030 0.482 0.482 0.2599 0.25417 0.928 0.894
0.75 0.1184 0.1183 1.157 0.158 0.2554 0.2436 0.199 0.187
1.00 0.1308 0.1308 2.160 2.161 0.2398 0.2294 0.309 0.296
1.25 0.1360 0.1360 3.470 3.409 0.2119 0.2035 0.392 0.382
1.50 0.1332 0.1331  4.737 4.736 0.1734 0.1679 0.443 0.436
1.75 0.123¢ 0.1233 5.975 5.970 0.1284 0.1252 0.472 0.466
2.0 0.1078 0.1078 7.024 7.017 0.0815 (0.0804 0.489 0.483

*Neutral-surface location Zy is not listed here (see [22])

5 = (wh/ab T, b2)10

Next, finite-element results are presented for other combinations of
loading and boundary conditions that are not amenable to closed-form
solutions. Figure 3 shows plots of the nondimensionalized deflection
versus the side-to-thickness ratio for two-layer (0°/90°) and one-layer
simply-supported (SS) square plates (polyester-rubber) under uniform
temperature gradient through the thickness. The effect of the thickness

shear on the deflections is apparent from the graphs.
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Fig.3 Nondimensionalized center deflection vs. side-to-thickness
ratio for two-layer simply supported (SS) square plates
under uniformly distributed temperature gradient through
the thickness.
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Natural Vibration Results

Before we present the numerical results of free vibration, we
discuss the effect of bimodulus action on plate stiffness in different
portions of a vibration cycle. First consider a single-layer, bimodulus
material plate at the two extremes of its deflection (Fig. 4). During
the first half cycle (see Fig. 4a) the top surface is in compression and
the bottom in tension, thus causing the neutral surface for €y to be
positive (znx > 0), i.e., a certain distance below the plate midplane.
During the second half cycle (Fig. 4b) the top surface is in tension and
the bottom is in compression, just opposite to that encountered in the
first half cycle. However, the magnitude of Zox is the same as in the
first half cycle. Thus, it can be concluded that the effective stiffness
(and thus the frequency) associated with the second half cycle is
identical to that of the first half cycle and either modal shape, Fiqg. 4a
or 4b, will give the same computational result for the natural
frequencies.

Now consider a two-ply laminate with the bottom layer (layer & = 1)
oriented at 0° and the top layer (% = 2) at 90° (see Fig. 4). Initially,
as shown in Fig. 4c, the neutral surface for € falls below the
interface, within the 0° layer, while the neutral surface for ey falls
above the interface, completely within the 90° layer. In the latter
portion of the cycle, Fig. 4d, the €y neutral surface falls outside of
the layer, and the ey neutral surface falls outside of the 90° layer.
Therefore, compressive properties are used for the entire 0° layer, and
tensile ones for the 90° layer. Thus, for a two-layer cross-ply laminate

the plate stiffnesses acting in the two portions of a cycle are different

and the associated frequencies are also different (except for a square

o AP WPy
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(A) FIRST HALF CYCLE (B) SECOND HALF CYCLE
SINGLE-LAYER, 0° BIMODULUS PLATE

m
]

(]
[}
o

(C) FIRST PGRTION (D) SECOND PORTION
OF CYCLE OF CYCLE

TWO-LAYER, CROSS-PLY PLATE
(BOTTOM LAYER AT 0°, TOP LAYER AT 90°)

Fig. 4 Bimodulus action in single-layer and cross-ply plates in
the fundamental mode of vibration. Cross-hatched regions
denote tension in the respective fiber directions.




plate). Denoting the frequencies associated with the two portions of a
vibration cycle by w, and w,, we can easily show that the average
frequency (w) over the entire cycle is

wl= (1/2)(4»);l + w,l) (4.4)
Thus, the computational procedure required for a cross-ply plate is to
calculate w, and w, associated with modal shapes shown in Figs. 4c and
4d, respectively, and then to apply equation (4.4).

The question arises as to the possibility of a discontinuity in
energy at the instant of time between the two portions of a cycle.
However, it was shown in [23] that there is no such discontinuity.

Numerical results are presented for relatively thick plates (b/h =
10) of aramid-rubber. Plate aspect ratio affects the fundamental
frequency much more than it does the neutral-surface portion (see Tables
4-5). For the cross-ply case, only Zil) and Ziz) is close to 251). In
Fig. 5 the good agreement between the CFS and FES results is clearly
shown,

Since there are very drastic changes in neutral-surface locations
(for example, Zoy for aramid-rubber goes from approximately 0.4h to -
0.03h) from one cycle portion to the other, there is a question that may
arise regarding a possible transient action. However, the neutral
surfaces are just boundaries between the tensile and compressive regions

(analogous to the elastic-plastic boundary in elastoplastic problems).

Thus, they have no mass and there is no transient action.
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Table 5 Dimensionless fundamental frequencies in the first partial
cycle, second partial cycle, and complete cycle of motion for
two-layer, cross-ply plates having b/h = 10 by closed form and
finite element methods.

w0 b2(P/ESHHZ  wp2(p/ES N2 w2(p/eS n3) /2
a/b CFS FES CFS FES CFS FES
y

Aramid-Rubber:

0.5 19.38 20.23 13.88 14.55 16.18 16.93 §

0.7 11.60 12.17 9.353 9.807 10.35 10.86 £

1.0 7.038 7.386 7.038 7.364 7.038 7.375

1.4 4,838 5.045 6.037 6.356 5.371 5.625

2.0 3.712 3.909 5.551 5.821 4,449 4.677
Polyester-Rubber: s

0.5 19,12 19.81 15.95 16.61 17.39 18.07

0.7 11.43 11.92 10.04 10.45 10.69 11.14

1.0 7.084 7.406 7.085 7.394 7.085 7.400

1.4 5.164 5.407 5.928 6.193 5.520 5.773

2.0 4.310 4.518 5.435 5.688 4,807 5.036

5. Summary and Conclusions

Both closed-form and finite-element solutions are presented for
static bending and free vibrations of single-layer and two-layer cross-

ply plates of bimodulus composite materials. [In the case of simply

supported plates under sinusoidal temperature distribution, normal-
pressure loading, and free vibration, the closed-form and the finite-
element solutions for neutral-surface locations, center deflections, and
fundamental frequencies are in excellent agreement. The finite-element
method is then used to obtain solutions for simply-suppoarted plates under
uniform loading, for which no closed-form solution can be obtained for
the bimodulus case.

The research reported here has recently been extended to
mechénica]?y loaded thin cylindrical shells [26], free vibration of thin
and thick cylindrical shells [27], and thermally and mechanically loaded
thick cylindrical shells [28].
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